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On a Mixed Problem for
Navier-Stokes System in the Unit Cube

N. Aliev, Sh. Rezapour, and M. Jahanshahi

Abstract. Mixed problems on the unit balls have special complexity.
By using a new method we shall give some sufficient conditions for
existence of solutions of the Fefferman’s problem B ([4]).

1. Introduction

There are usually mathematical models based on differential equations,
integral equations and integro-differential equations for physical and natural
events. These models are frequently based on Cauchy problem, boundary
value problem or mixed problem ([5-9, 18-20]). If there is the time variable
in these equations, for verification of their solutions we obtain a boundary
value problem which is depend on complex parameter by using the method
in [15] or Laplace transform (see [7, 18]).

The boundary value problem may be in a bounded or unbounded region.
We must provide boundary conditions in bounded regions, but solutions of
the problems and their derivatives are periodic or tend to zero at infinity in
unbounded regions.

The potential theory is useful in many boundary value problems, for exam-
ple Dirichlet and Neumann problems. But, potential theory is not efficient
in solving of many another problems (see [1-3, 10, 12-14] and [17]). We shall
give a method that it will be efficient than the potential theory.

The Euler and Navier-Stokes equations describe the motion of a fluid in
Rn (n = 2 or n = 3). These equations are to be solved for an unknown
velocity vector u(x, t) = (ui(x, t))1≤i≤n ∈ Rn and pressure p(x, t) ∈ R,
defined for position x ∈ Rn and time t ≥ 0. We restrict attention here to
incompressible fluids filling all of Rn. The Navier-Stokes equations are then
given by:
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(1)
∂ui
∂t

+
n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi(x, t), (x ∈ Rn, t ≥ 0),

(2) div u =
n∑
i=1

∂ui
∂xi

= 0, (x ∈ Rn, t ≥ 0)

with initial conditions:

(3) u(x, 0) = u0(x), (x ∈ Rn).

Here, u0(x) is a given C∞ divergence-free vector field on Rn, fi(x, t) are
the components of a given externally applied force (e.g. gravity), ν is a
positive coefficient (the viscosity) and ∆ =

∑n
i=1

∂2

∂x2
i
is the Laplacian in the

space variables. The Euler equations are equations (1), (2), (3) with ν is
equal to zero.

Equation (1) is just Newton’s low f = ma for a fluid element subject to the
external force f = (fi(x, t))1≤i≤n and to the forces arising from pressure and
friction. Equation (2) just says that fluid is incompressible. For physically
reasonable solutions, we want to make sure u(x, t) does now grow large as
|x| −→ ∞. Hence, we will restrict to forces f and initial conditions u0 that
satisfy:

(4) |∂αxu0(x)| ≤ CαK(1 + |x|)−K on Rn, for any α and K

and

(5) |∂αx ∂mt f(x, t)| ≤ CαmK(1 + |x|+ t)−K on Rn× [0,∞), for any α,m,K.

We accept a solution of (1), (2) and (3) as physically reasonable only if it
satisfies:

(6) p, u ∈ C∞(Rn × [0,∞))

and

(7)
∫

Rn
|u(x, t)|2 dx < C, for all t ≥ 0 (bounded energy).

A fundamental problem in analysis is to decide whether such smooth,
physically reasonable solutions exist for the Navier-Stokes equations. To
give reasonable leeway to solvers while retaining the heart of the problem,
Fefferman has provided four problems A, B, C and D. The authors have
verified the problems C and D in [4]. Here, we restate the problem B.

(B) Existence and Smoothness of Navier-Stokes Solutions in
R3/Z3. Take ν > 0 and n = 3. Let u0(x) be any smooth, divergence-
free vector field satisfying (8). Take f(x, t) to be identically zero. Then
there exist smooth functions p(x, t), ui(x, t) on R3 × [0,∞) that satisfy (1),
(2), (3), (10) and (11).
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2. On the Problem B

Note that we could solve following problem instead the problem B:

(8)
∂ui
∂t

+
3∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
(0 < xi < 1, i = 1, 2, 3, t ≥ 0),

(9) div u =
3∑
i=1

∂ui
∂xi

= 0, (0 < xi < 1, i = 1, 2, 3, t ≥ 0),

(10) u(x, 0) = u0(x), (0 < xi < 1, i = 1, 2, 3),

where ν > 0 and p, u ∈ C∞(R3 × [0,∞)). Also, u0 satisfies in following
condition:

(11) u0(x+ ej) = u0(x), (j = 1, 2, 3),

where {e1, e2, e3} is the standard basis of R3. Furthermore,

(12) u(x+ ej) = u(x), (j = 1, 2, 3).

By using Laplace transformation on (8), (9) and (10), we have:

(13) ∆ũi(x, λ) = −λ
ν
ũi(x, λ) = Fi(x, λ), (0 < xi < 1, i = 1, 2, 3),

(14)
3∑
i=1

∂ũi(x, λ)
∂xi

= 0, (0 < xi < 1, i = 1, 2, 3),

where

(15)
Fi(x, λ) = −1

ν
u0
i (x) +

1
ν

3∑
j=1

∫ ∞
0

e−λtuj(x, t)
∂ui(x, t)
∂xj

d t+

+
1
ν

∂

∂xi
p̃(x, t), (0 < xi < 1, i = 1, 2, 3).

For simplicity in notation, put D = {x ∈ R3 : 0 < xi < 1, i = 1, 2, 3} and
γ = ∂D. It is know that fundamental solution of the Helmholtz equation
∆ũi(x, λ)− λ

ν ũi(x, λ) = 0, is:

(∗) U(x− ξ, λ) = −e
−

√
λ
ν
|x−ξ|

4π|x− ξ|
,

in the sense that:

(∗∗) ∆xU(x− ξ, λ)− λ

ν
U(x− ξ, λ) = δ(x− ξ).
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Now, we multiple both sides of (13) in (∗), and then we integrate the result
on the region D. Hence, by using Gauss-Ostrogradskii formula in the first
part of left hand side we have:

(16)

∫ 1

0
dx2

∫ 1

0
dx3

[
ũi(1, x2, x3, λ)

∂U(x− ξ, λ)
∂x1

|x1=1−

− ∂ũi(x, λ)
∂x1

|x1=1U(1− ξ1, x2 − ξ2, x3 − ξ3, λ)
]
−

−
∫ 1

0
dx2

∫ 1

0
dx3

[
ũi(0, x2, x3, λ)

∂U(x− ξ, λ)
∂x1

|x1=0−

− ∂ũi(x, λ)
∂x1

|x1=0U(−ξ1, x2 − ξ2, x3 − ξ3, λ)
]
+

+
∫ 1

0
dx1

∫ 1

0
dx3

[
ũi(x1, 1, x3, λ)

∂U(x− ξ, λ)
∂x2

|x2=1−

− ∂ũi(x, λ)
∂x2

|x2=1U(x1 − ξ1, 1− ξ2, x3 − ξ3, λ)
]
−

−
∫ 1

0
dx1

∫ 1

0
dx3

[
ũi(x1, 0, x3, λ)

∂U(x− ξ, λ)
∂x2

|x2=0−

− ∂ũi(x, λ)
∂x2

|x2=0U(x1 − ξ1,−ξ2, x3 − ξ3, λ)
]
+

+
∫ 1

0
dx1

∫ 1

0
dx2

[
ũi(x1, x2, 1, λ)

∂U(x− ξ, λ)
∂x3

|x3=1−

− ∂ũi(x, λ)
∂x3

|x3=1U(x1 − ξ1, x2 − ξ2, 1− ξ3, λ)
]
−

−
∫ 1

0
dx1

∫ 1

0
dx2

[
ũi(x1, x2, 0, λ)

∂U(x− ξ, λ)
∂x3

|x3=0−

− ∂ũi(x, λ)
∂x3

|x3=0U(x1 − ξ1, x2 − ξ2,−ξ3, λ)
]
+

+
∫
D
Fi(x, λ)U(x− ξ, λ) dx =

=

{
ũi(ξ, λ), ξ ∈ D
1
2 ũi(ξ, λ), ξ ∈ γ,

(i = 1, 2, 3).

By above relation and lateral faces of γ, note that we could obtain six
expressions which these will be our necessary conditions. By (∗), we have:

(17)
∂U(x− ξ, λ)

∂xm
=
e
−

√
λ
ν
|x−ξ|

4π|x− ξ|2

[
1 +

√
λ

ν
(xm − ξm)

]
xm − ξm
|x− ξ|

,

(m =1, 2, 3).
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Remark 2.1. Note that all partial differentials of the fundamental solution,
respect to xm, calculate at xm = 0 or xm = 1 in (16). So by (17), all integrals
in (16) are exist.

Now, similar to the process in [10-14], by using values of partial differ-
entials of ũi(x, λ) on boundary of γ, we want to obtain another necessary
conditions.

Now, by multiple the equation (13) by (17) and then by integrate of both
hand sides of the result on the region D, we obtain:

(18)

∫
D

∆ũi(x, λ)
∂U(x− ξ, λ)

∂xm
dx−

λ

ν

∫
D
ũi(x, λ)

∂U(x− ξ, λ)
∂xm

dx =

=
∫
D
Fi(x, λ)

∂U(x− ξ, λ)
∂xm

dx, (i,m = 1, 2, 3).

Note that the Gauss-Ostrogradskii formula should be use carefully. In fact,
in calculates of these integrals must not appear any partial differentials of
order more than two of the functions ũi(x, λ) and U(x− ξ, λ) in the region
D, and any partial differentials of order more than one of these functions on
the boundary of γ. Then:

(19)

3∑
k=1

∫
γ

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xm

cos(s, xk) dx−

−
3∑

k=1

∫
D

∂ũi(x, λ)
∂xk

∂2U(x− ξ, λ)
∂xm∂xk

dx−

−λ
ν

∫
γ
ũi(x, λ)U(x− ξ, λ)cos(s, xm) dx+

+
λ

ν

∫
D

∂ũi(x, λ)
∂xm

U(x− ξ, λ) dx =

=
∫
D
Fi(x, λ)

∂U(x− ξ, λ)
∂xm

dx, (i,m = 1, 2, 3),
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where s is the outside orthogonal vector on the boundary of γ. Thus:

(20)

3∑
k=1

∫
γ

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xm

cos(s, xk) dx−

−
3∑

k=1

∫
γ

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xk

cos(s, xm) dx+

+
3∑

k=1

∫
γ

∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂xk

cos(s, xk) dx−

−
∫
D

∂ũi(x, λ)
∂xm

∆xU(x− ξ, λ) dx−

−λ
ν

∫
γ
ũi(x, λ)U(x− ξ, λ)cos(s, xm) dx+

+
λ

ν

∫
D

∂ũi(x, λ)
∂xm

U(x− ξ, λ) dx =

=
∫
D
Fi(x, λ)

∂U(x− ξ, λ)
∂xm

dx.

Now by using (∗∗), we obtain:

(21)

3∑
k=1

∫
γ

[∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂xk

]
cos(s, xk) dx−

−
∫
γ

[ 3∑
k=1

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xk

+

+
λ

ν
ũi(x, λ)U(x− ξ, λ)

]
cos(s, xm) dx−

−
∫
D
Fi(x, λ)

∂U(x− ξ, λ)
∂xm

dx =


∂ũi(ξ, λ)
∂ξm

, ξ ∈ D,

1
2
∂ũi(ξ,λ)
∂ξm

, ξ ∈ γ.
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Hence:

(22)

∫ 1

0
dx2

∫ 1

0
dx3

[∂ũi(x, λ)
∂x1

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x1

]
x1=1
−

−
∫ 1

0
dx2

∫ 1

0
dx3

[∂ũi(x, λ)
∂x1

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x1

]
x1=0

+

+
∫ 1

0
dx1

∫ 1

0
dx3

[∂ũi(x, λ)
∂x2

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x2

]
x2=1
−

−
∫ 1

0
dx1

∫ 1

0
dx3

[∂ũi(x, λ)
∂x2

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x2

]
x2=0

+

+
∫ 1

0
dx1

∫ 1

0
dx2

[∂ũi(x, λ)
∂x3

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x3

]
x3=1
−

−
∫ 1

0
dx1

∫ 1

0
dx2

[∂ũi(x, λ)
∂x3

∂U(x− ξ, λ)
∂xm

+

+
∂ũi(x, λ)
∂xm

∂U(x− ξ, λ)
∂x3

]
x3=0
−

−
∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm

[ 3∑
k=1

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xk

+

+
λ

ν
ũi(x, λ)U(x− ξ, λ)

]
xm=1

+

+
∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm

[ 3∑
k=1

∂ũi(x, λ)
∂xk

∂U(x− ξ, λ)
∂xk

+

+
λ

ν
ũi(x, λ)U(x− ξ, λ)

]
xm=0

−

−
∫
D
Fi(x, λ)

∂U(x− ξ, λ)
∂xm

dx =


∂ũi(ξ, λ)
∂ξm

, ξ ∈ D,
1
2
∂ũi(ξ,λ)
∂ξm

, ξ ∈ γ,

(i,m = 1, 2, 3).
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Remark 2.2. Contrary to Remark 2.1, here some integral are not com-
putable, but in any case, we obtain many relations from (18), which will be
our necessary conditions.

Now from (17), we can see that in the case x = ξ:

(23)
∂U(x− ξ, λ)

∂xm
=

xm − ξm
4π|x− ξ|3

+ · · · , (m = 1, 2, 3),

where the first term has strong singularity and reminder terms have weak
singularity. From (18) and (19), we have"

(24)

∂ũi(ξ, λ)
∂ξm

|ξ1=1 =

= 2
∫ 1

0
dx2

∫ 1

0
dx3

∂ũi(x, λ)
∂x1

|x1=1
U(x− ξ, λ)

∂xm
|x1=1,ξ1=1−

−2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=1
U(x− ξ, λ)

∂xk
|xm=1,ξ1=1+

+ · · · , (i,m = 1, 2, 3).

If m = 1 and k = 2 or k = 3, then there is singularity in the second term of
right hand side of (20), and if m 6= 1, then there is singularity in the first
term of left hand side of (20). Also:

(25)

∂ũi(ξ, λ)
∂ξm

|ξ1=0 =

= −2
∫ 1

0
dx2

∫ 1

0
dx3

∂ũi(x, λ)
∂x1

|x1=0
U(x− ξ, λ)

∂xm
|x1=0,ξ1=0+

+2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=0
U(x− ξ, λ)

∂xk
|xm=0,ξ1=0+

+ · · · (i,m = 1, 2, 3);

(26)

∂ũi(ξ, λ)
∂ξm

|ξ2=1 =

= 2
∫ 1

0
dx1

∫ 1

0
dx3

∂ũi(x, λ)
∂x2

|x2=1
U(x− ξ, λ)

∂xm
|x2=1,ξ2=1−

−2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=1
U(x− ξ, λ)

∂xk
|xm=1,ξ2=1+

+ · · · , (i,m = 1, 2, 3);
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(27)

∂ũi(ξ, λ)
∂ξm

|ξ2=0 =

= −2
∫ 1

0
dx1

∫ 1

0
dx3

∂ũi(x, λ)
∂x2

|x2=0
U(x− ξ, λ)

∂xm
|x2=0,ξ2=0+

+2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=0
U(x− ξ, λ)

∂xk
|xm=0,ξ2=0+

+ · · · , (i,m = 1, 2, 3);

(28)

∂ũi(ξ, λ)
∂ξm

|ξ3=1 =

2
∫ 1

0
dx1

∫ 1

0
dx2

∂ũi(x, λ)
∂x3

|x3=1
U(x− ξ, λ)

∂xm
|x3=1,ξ3=1−

−2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=1
U(x− ξ, λ)

∂xk
|xm=1,ξ3=1+

+ · · · , (i,m = 1, 2, 3);

(29)

∂ũi(ξ, λ)
∂ξm

|ξ3=0 =

= −2
∫ 1

0
dx1

∫ 1

0
dx2

∂ũi(x, λ)
∂x3

|x3=0
U(x− ξ, λ)

∂xm
|x3=0,ξ3=0+

+2
3∑

k=1

∫ 1

0

∫ 1

0

dx1 dx2 dx3

dxm
∂ũi(x, λ)
∂xk

|xm=0
U(x− ξ, λ)

∂xk
|xm=0,ξ3=0+

+ · · · , (i,m = 1, 2, 3).

By using Laplace transformation on the boundary condition (12), we obtain

(30)



ũi(0, x2, x3, λ) = ũi(1, x2, x3, λ),

ũi(x1, 0, x3, λ) = ũi(x1, 1, x3, λ),

ũi(x1, x2, 0, λ) = ũi(x1, x2, 1, λ),

∂ũi(x, λ)
∂xm

|xk=0 =
∂ũi(x, λ)
∂xm

|xk=1,

(i,m, k = 1, 2, 3).

From (19) and (26) we see that by addition of (20) and (21), (22) and
(23), (24) and (25), the parts which have strong singularity will be delete,
so in the terms of:

(31)
∂ũi(ξ, λ)
∂ξm

|ξk=0 +
∂ũi(ξ, λ)
∂ξm

|ξk=1 = · · · (i,m, k = 1, 2, 3),

there is not the strong singularity. Now, we can see from (16) that ũi(ξ, λ)
is depend to the boundary values of ui(ξ, λ), ∂ũi(x,λ)

∂xk
|xk=0 and ∂ui(x,λ)

∂xk
|xk=1,

(i, k = 1, 2, 3), whenever ξ ∈ D. By using (26), boundary values of ũi(x, λ)
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and (16), we obtain three second type Fredholm integral equations which
their kernels have weak singularity. Similarly by using of (26), (27), the
boundary values ∂ũi(x,λ)

∂xk
|xk=0 and ∂ui(x,λ)

∂xk
|xk=1, (i, k = 1, 2, 3), we obtain

six second type Fredholm integral equations which their kernels have weak
singularity.
Remark 2.3. In the above equations which be used, in addition to values:

(32)
∂ũi(x, λ)
∂xk

|xk=0, (k = 1, 2, 3),

there are also the values:

(33)
∂ũi(x, λ)
∂xm

|xk=0 (m, k = 1, 2, 3;m 6= k).

Since:

(34)
∂ũi(x, λ)
∂xm

|xk=0 =
∂

∂xm
[ũi(x, λ)|xk=0],

we could calculate the integrals of these functions by integration part by
part, and so we will differentiate respect to xm of the fundamental solutions
which are in side of the values ∂ũi(x,λ)

∂xm
. Hence, strong singularity will not

appear.
Note that it follows from periodicity condition of ũi(x, λ) that all values

of ũi(x, λ) are equal on parallel faces of the unit cube, and so all values of
ũi(x, λ) are equal on vertices of the unit cube.

If ξ is choose on common axes of faces of the unit cube, then from (16)
and (18), we obtain integro-differential systems which will be our necessary
conditions. By using (26) and (27), we could calculate the values:

(35)
∂ũi(x, λ)
∂xm

|xk=0 (m, k = 1, 2, 3;m 6= k),

and then by integration respect to xm for the functions ũi(x, λ)|xk=0, (k =
1, 2, 3), we will obtain an integral equations system in which the kernels have
weak singularity.

If we write the unknowns of this equations system as the form:

(36)

(ũi(0, x2, x3, λ), ũi(x1, 0, x3, λ), ũi(x1, x2, 0, λ),

∂ũi(x, λ)
∂x1

|x1=0,
∂ũi(x, λ)
∂x1

|x2=0,
∂ũi(x, λ)
∂x1

|x3=0,

∂ũi(x, λ)
∂x2

|x1=0,
∂ũi(x, λ)
∂x2

|x2=0,
∂ũi(x, λ)
∂x2

|x3=0,

∂ũi(x, λ)
∂x3

|x1=0,
∂ũi(x, λ)
∂x3

|x2=0,
∂ũi(x, λ)
∂x3

|x3=0) ≡ Ũi,

(i = 1, 2, 3),



N. Aliev, Sh. Rezapour, and M. Jahanshahi 23

then we could write this system as:

(37) Ũi = TŨi + F̃i, (i = 1, 2, 3),

where, F̃i is a column vector of known functions and T is the integral oper-
ator in which its kernel tends to zero, whenever:

(38) λ ∈ Rσ = {λ : −π + σ ≤ argλ ≤ π − σ}

and |λ| is sufficiently large. Thus, the system (29) has an unique solution.
After solve of the system (29), all functions of (28) will be obtain which

by replacement in (26) we will have a non-linear integro-differential system
according to the functions ũi(ξ, λ) (ξ ∈ D). By solving it we could find the
functions ũi(ξ, λ) (ξ ∈ D). Now by the inverse Laplace transform, we could
obtain the functions ui(ξ, τ) (ξ ∈ D) and by periodicity of these functions,
we could find the functions ui(ξ, τ) on R3. Therefore, we could obtain p(ξ, τ)
as the method which is provided in [5].

Theorem 2.4. Suppose that in the relations (8)-(10), ν > 0, u0 satisfies in
the condition (11) and:

(39)
∫

[0,1]3
u0
i (x) dx = 0,

for all index i (1 ≤ i ≤ 3). Then, the problem B has an unique solution on
the cube which satisfies in the conditions (11) and (12).

Now, we could obtain the unique solution of the problem B on R3 by
periodic extension the above unique solution.
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